3 configurations, Mission Ctrl + Ground station integration

Last 2 weeks - Rover - was done 3 configurations. a) Rover as moon rover - it is a "virtual rover". Exists in 3D model formats. Majority parts has to be made from carbon fiber. To make each (carbon fiber) part need to design molds, and to print molds from PVA (like this) on a 3D printer (like that). Today we know that on that printer, to make all molds, and to make all carbon fiber frames (like this), with "space capable to fly" epoxy (like this) it is require total 45 days. That is why we named that moon rover as a "virtual one". Before arrangements of the flight to the moon, it is not practical to spend time and efforts to build such device. Only demonstration can be a purpose for rush, to build a "virtual rover". b) Rover as a ground station for a test flight. That is exactly same rover but designed to operate on the earth surface. In this case it is not require use of carbon fiber. Same parts can be made from less strong plastic. c) Compact version of a rover. It is not a rover truly speaking -- it looks like regular ground station, but parts for such configuration is exactly same as in configuration (b). That compact version also is for a debugging software purposes. Configuration (b) and (c) has totally different mechanical properties, but software which will control 4 stepper motors in first configuration and 2 steppers motors in second configuration, must be the same, software should be self adaptable for such different mechanical configuration, to perform task for orientation the antenna to a moving target -- flying cubesat. Plus convenience to use 3D printing on factory allows, to separate process of design and manufacturing, make ground station on 2.4Ghz for a cubesat repeatable, and, who knows!, can allow to support main project by taking orders to build 2.5 GHz ground stations. Parts can be ordered on next week via shapeways factory. Antenna will be regular helix (like this one), or reduced size helix (like that one). Reduced size helix has major advantages -- 3D print is twice less expensive than regular helix; different winding of a conductor allows to reduce interference of two transmitters working on the same frequency at the same time, which is important in a case of constellation of cubesats flying together. Ground station electronics and software. The same main processor board for ground station (like this) is reused from a cubesat main processor board. Last week was done integration of a board with mission control, today mission control can operate flash memory and main computer commands. Some improvements was done on simulation of a flight, and session data visualization.

Share this Page

Become a Part of the Future! Sign Up for Our Newsletter: